# To Step and To Serve: Motors

Small motors can be categorized into motors to obtain power by converting electrical energy to rotational energy, and motors for control where rotational position and velocity are regulated to achieve specific control purposes. The latter is mainly used for automation purposes.

Electrical actuators that can be motion controlled with sequence programs are suitable for positioning applications and multiple variety production systems. There are motors with direction reversing capability, with brakes, and torque detection capability. In this post, we will focus on Stepper and servo motors.＜Partial reference from Oriental Motor Corp. material＞

Stepper Motor

A stepper motor is a motor where its rotation (rotation angle/speed) is controlled by advancing or delaying the motor’s built-in primary step angle with an externally controlled number of pulses and frequency. In a case for 5-phase stepper motor system, the motor’s built-in primary step angle is 0.72 degrees/step (360° / 500 pulses). In order to rotate a 5-phase motor 90 degrees, 125 steps will need to be programmed. Under no load condition, a step accuracy is ±0.05 degrees and this high accuracy is not step to step cumulative.

A system configuration comprised of: PLC (Programmable Logic Controller) + Stepper motor controller + Stepper motor driver + Stepper motor is needed to control the rotation of a stepper motor (see [Fig.1]).

Programs in the PLC are converted into pulse signals (see [Fig.2]) in the controller, then converted into motor controlling electrical current in the driver.

Rotation angle and speed are calculated by the following equations.

Example

Case for: Step angle：0.72 deg., Pulse rate: 100Hz…
12（r／min）・・・ 12 rotations per minute
Case for: Step angle：0.72 deg., Pulse rate: 1000Hz…
120（r／min）・・・ 120 revolutions per minute

Since the stepper motors do not have rotation angle references, mechanical home positions must be provided when used for positioning applications.

Servo Motor

The names of motors are fitting for their function. Stepper motors are controlled by steps (more accurately Pulses). Servo motors, like its name’s origin “to serve as told”, can be controlled as a servant.

In order to “serve”, a rotation detector or encoder is built into the motor. The encoder detects motor shaft’s position and speed. The control scheme compares the motor’s actual behavior against the internal program to perform a feedback control (position/velocity control).

The encoder turns the motor into a servant in this system. Since the servo motor has a built-in rotation detector, alarm signals can be output when any abnormal stops or loads are encountered.

The control scheme targets to reduce the error between the detected pulses and the commanded pulses to zero so the net control accuracy can be ±1 pulse (2 pulses in total). The accuracy increases as the encoder resolution increases.

There are some cautionary points such as the mechanical rigidity of the system. It may become difficult to achieve ±1 pulse control due to a lack of system rigidity requiring great efforts on servo parameter tuning. It is important to properly design the mechanical system in order to benefit fully from servo motors. Choosing the correct motor will depend on your application parameters. Be sure to check out our post on Servo vs. Stepper motors: The Great Debate here! Also, every motor needs a good coupling to match, choose the right one here!

If you’re looking for some general-purpose motors, be sure to check out WEG motors and drives on MISUMI’s website. They are perfect for applications the require robustness, low weight, and high performance in a single product.

• ### Warehouse Automation Part 3: Automated Storage and Retrieval Systems (AS/RS)

For Part 3 of the Warehouse Automation series, we will talk about Automated Storage and Retrieval Systems (AS/RS). If you missed ...
• ### Warehouse Automation Part 2: Automatic Guided Vehicles & Autonomous Mobile Robots

As promised, our warehouse automation series continues with AGV’s and AMR’s. The two may seem very similar, however, several key factors ...
• ### Warehouse Automation Part 1: Pick-to-Light Systems

In the age of IoT, warehouse automation is at the forefront of many industries. In this series of posts, we will ...
• ### To Step and To Serve: Motors

Small motors can be categorized into motors to obtain power by converting electrical energy to rotational energy, and motors for control ...
• ### Automation Design Tips: Transferring with Rollers Part 2

In the previous Automation Design Tips on Transferring with Rollers, it was explained that the three-row independent feed roller configuration would ...
• ### Automation Design Tips: Transferring with Rollers

During this series of Automation Design Tips, we will be covering design elements of transfer specifically with rollers. As technology advances, ...
• ### How to Select the Right Bearing Part 1 with Koyo Bearings

The order of priority for selecting bearings, and the types of bearings When designing a machine, it is important to select ...
• ### Achieving Optimal Air Prep Performance with Norgren

You find out that your pneumatic equipment warranty states that the warranty applies when using clean, dry air. What does this ...
• ### Mounting Your Shock Absorber in Rotary Applications with ACE Controls

Mounting shock absorbers in rotary applications can be a challenge. Shock absorber global expert ACE Controls shares with us common issues ...
• ### Linear Motion Product Requirements for Processing Areas with Bosch Rexroth

MISUMI is proud to welcome Bosch Rexroth to their expanding brand portfolio. They shared with us their knowledge on the requirements ...
• ### The Amazing History of Bearings with Koyo Bearings

This blog post was provided by the team at Koyo Bearings. You can find the original post at this link. It ...
• ### Types of Rollers and How They Are Used

Rollers are widely used components that serve the simple yet surprisingly diverse functions of facilitating and processing material and product movements ...
• ### How to Select the Right Bearing Part 1 with Koyo Bearings

The order of priority for selecting bearings, and the types of bearings When designing a machine, it is important to select ...

• ### Get it Twisted: Twisted Pair vs. Non-Twisted Pair Cables

How should I appeal to you, the reader?  Do I get very technical and industry focused and make this article geared ...
• ### Achieving Optimal Air Prep Performance with Norgren

You find out that your pneumatic equipment warranty states that the warranty applies when using clean, dry air. What does this ...
• ### Mounting Your Shock Absorber in Rotary Applications with ACE Controls

Mounting shock absorbers in rotary applications can be a challenge. Shock absorber global expert ACE Controls shares with us common issues ...
• ### Linear Motion Product Requirements for Processing Areas with Bosch Rexroth

MISUMI is proud to welcome Bosch Rexroth to their expanding brand portfolio. They shared with us their knowledge on the requirements ...

## How to Select the Right Bearing Part 1 with Koyo Bearings

The order of priority for selecting bearings, and ...